
Procedural Content 
Generation: Planners and 

Constraints 

2019-11-11

Credit: https://github.com/mxgmn/WaveFunctionCollapse

https://github.com/mxgmn/WaveFunctionCollapse


Model Free & PCG Rules (CAs, Agents, Grammars)

1. What are 3 high-level forms of PCG we discussed so far?

2. We described cellular automaton and agents as _______

3. Discuss the relationship of evaluation/fitness functions and (a) 
player models, and (b) designer preferences

4. L-systems are a form of ____, and are particularly useful for ____

5. What is the rewriting order of L-systems, and why does this 
matter?

6. What class of techniques have we seen before that seem 
particularly suited to quest and story generation?



Model free Approaches 

• Start with some data about a playerbase and game world

• Categorize learn what types exist

• Regression analysis how does x relate to y?

– X: Input about the playerbase/game world

– Y: Something we want to predict/understand

• Classify which y is x a member of?

3



Quick Tangent: Churn

• Churn rate: The rate at which customers cut ties with a 
company

• In games this is how quickly a game loses players. After how 
long do they stop playing?

• Churn is one of the most common problems player analytics 
teams are tasked with

4



Mining The Madden (‘11) Experience

• What gameplay features impact player 
retention? What are optimal win rates for 
retention?
– Use ML to build models of player behavior
– Analyze generated models to ID influential 

gameplay elements

• Used 350 GB of play-by-play summaries of 
~25k Xbox 360 players. 

• Converted player behavior to (46) feature 
vector rep
– Game modes (usage, win rates)
– Performance metrics (turnovers, gain)
– End conditions (completions, peer quits)
– Feature usage (gameflow, scouting, audibles, 

special moves)
– Play preference (running, play diversity)

5Credit: Ben Weber, Expressive Intelligence Studio (UC Santa Cruz)



Most influential features in predicting retention

6Credit: Ben Weber, Expressive Intelligence Studio (UC Santa Cruz)



Cellular Automaton

Pros
– Easy to implement
– Complex behavior from small 

set of rules
– Intuitive mapping to game 

space generation
– Local coherence

Cons
– Reliant on guess and check for 

modifying
– Hard to spot edge cases
– No way to forbid undesired 

output
– Upper bound is slow
– Global incoherence

7



Comparisons: CA vs Agents

• Similarities (rule system commonalities):

– Rely on “emergent” output of simple rules

– Hard to make strong designer restrictions

– Requires a lot of guess and check

– Can take a long time to converge

• Differences

– Agents allows for some global assurances

– CA more emergent in its output

8



Major Drawback of CA

• What cellular automaton could you construct to build a house? 
A sword? An NPC? 

– Local rules don’t adapt well to generating bits that require strong 
global coherence

– Said another way, no one wants an NPC that only looks locally like a 
human 

9



Generative Grammars

Pros:

– General usage

– High-quality, “feels designed” quality

– Accessible

– Fast

Cons:

– Large burden on design

– Hard to “debug”

• How do you know if a fix actually fixed anything unless you generate infinite output?

10



Comparing the Approaches

• Rule Systems allow for emergent output from simple rules. But 
hard to control output.

• Generative grammars can create high-quality output, but depend 
upon expert authoring of components and production rules

• Search cuts back on authoring burden to just a heuristic and 
searchable representation, but these are unintuitive for many 
designers



On Maps

• Making maps with noise:
– https://www.redblobgames.com/maps/terrain-from-noise/

– https://www.redblobgames.com/maps/mapgen2/

– “Also take a look at mapgen4, my newer map generator that allows 
painting your own mountains, valleys, and oceans. It then simulates 
evaporation, wind, and rainfall, generating biomes and rivers that fit your 
map.”
• https://www.redblobgames.com/maps/mapgen4/

• More maps (Jason Grinblat): 
https://twitter.com/ptychomancer/status/980968298002006016

12

https://www.redblobgames.com/maps/terrain-from-noise/
https://www.redblobgames.com/maps/mapgen2/
https://twitter.com/ptychomancer/status/980968298002006016


PCG: PLANNING & CONSTRAINT SOLVING

See http://pcgbook.com/wp-content/uploads/chapter07.pdf

13

http://pcgbook.com/wp-content/uploads/chapter07.pdf


Story/Quests in Games

Backstories set up action/mood/theme/motive, but may or may not 
relate to level progression and game mechanics

Story: Series of events players experience
• Linear: players experience the same story
• Multilinear/Non-linear: players experience variations on the same 

story based on choices

Quests: Give the player something to do for experience points, 
challenge, or the story



Why would we want to generate these?

• Add more content to a game

• Create new types of game 
experiences

– More on this in later lecture

https://www.gamasutra.com/view/news/299840/EA_wants_to_use_machine_le
arning_to_create_realtime_game_narratives.php

https://www.gamasutra.com/view/news/299840/EA_wants_to_use_machine_learning_to_create_realtime_game_narratives.php


Another motivation

• PCG’d game worlds can lack meaning / motivation to the player
– “without context and goals, the generated behaviours, graphics, and game 

spaces run the danger of becoming insubstantial and tedious.” (Ashmore & 
Nitsche)

– Fix: tie PCG of game world into the PCG of the game story

• Computer RPGs often have a particularly degenerate form of quest, 
“generally structured as a list of tasks or milestones,” rather than 
open-ended goals the player can creatively satisfy

• How can quests be dynamically generated and adapted during 
gameplay? 

18



Quest Generation: Templates

• We can create a quest template based on standard quest types 
or to fulfill a specific in-game purpose

• Example: 
Assassination: Go to <LOCATION> and kill <Non-Essential NPC>



Quest Templates

• Variables: like <LOCATION>, slots that can be filled by specific 
values

• Values: The elements that can fill variables

• Rules: Constraints between variables that limit the types of 
values we can place in them.

• Generation is then trivial random selection



Quest Templates Example: Bethesda

• Collect values of types (LOCATION, NPC, etc) once the player 
has visited or been made aware of them

• On generation select a template and fill in with values from 
these types



Quest Templates

Pros
• Fast (basically a generative 

grammar)
• Can be customized to player 

experience

Cons
• Basically madlibs where you do 

the same madlib over and over 
again

• Gets boring quickly



Story Generation

• Templates

• Planning (forward, backward, POP, HTN)

• Talespin (1992)



Applying Planning to Story Generation

• What are the actions for a story, and what are the goals?

– Option 1: a story is a sequence/chain of events in a story/game 
world; in world action sequence eventually leads to the story’s 
ending

– Option 2: a story is a sequence/chain of narrative events in support 
of achieving the author/narrator goals

24



Planning a Story Domain

• The model of possible actions, locations, characters that can 
occur from a specific domain

• This must be authored by a designer instead of a typical story 
to use a planning approach

• What are some considerations in modeling the story domain?



On the Perspective of the Planner

• Character/Agent-based: Each agent is a planner, comes up with own plans. Replan if they 
break
– State: Current local state to an agent
– Actions: Actions that the agent (and those local to it) is capable of
– Goals: that of the agent (and those local to it)

• Author/Narrator-based: High-level story plans, with a much (?) larger search space
– State: The entire current story state (characters, locations, items, etc), and state of the narrative
– Actions: Everything any character/world and author/narrator could do
– Goals: that of the author, and of the agents

• Hybrid: plan author-level goals on top of story-world events 
– Intent-driven planning to balance author-centric and character-centric approaches to generation



Option 1: Agent’s Goals

• Generation via story world simulation and recounting: 
– generate stories by simulating/projecting what happens as characters 

move around and take actions in the story world, 

– the story consists of simply recounting the events that happened

• Drawback?
– Stories are carefully crafted by authors: pace, dramatic tension, 

foreshadowing, a narrative arc, etc., 

– A simulation of a day in the life of a virtual character does not necessarily 
have these features, except by accident

– An optimal plan (minimum steps) is rarely the most desirable story

27



Story Planning

Pros:

• Many possible stories

• Can adapt to the player

Cons:

• Slow

• Hard to get heuristics right (optimal stories rarely interesting)

• Have to ensure tie-in to the game world



Plan-space vs State-space

• Both state-space search and plan-space search algorithms have 
advantages. Which do you think has been favored?

• Plan space planners have been favored in creating stories because
– their representations are similar to the mental structure that humans 

construct when reading a story (Trabasso & Sperry) 

– their search processes resemble the way humans reason to find a solution 
(Rattermann et al.). 

• Furthermore, causal relationships encoded in the plan structure 
allow further investigation of computational models of narrative 
such as summarization and affect creation

29



Recall that

• State-space planners
– Make total-ordered plans
– Search a tree where nodes are states, and arcs are state transitions caused by an operator
– The solution is a sequence of arcs from initial to goal states

• Plan-space planners
– Make partially-ordered plans
– Search a tree where nodes are partial plans, and arcs are refinements to those partial plans
– The solution is a leaf node, a plan without flaws

• Hierarchical task network planners
– Can involve both partial and totally ordered tasks
– Search a tree of methods that accomplish the specified tasks and subtasks by recursively splitting 

composite non-primitive tasks into primitive tasks
– The solution is a full decomposition from task to primitives obeying the method and operator 

constraints

30



31
http://pcgbook.com/wp-content/uploads/chapter07.pdf



On Planning Languages

• Most STRIPS-style 
representations make a closed-
world assumption
– Any conditions not explicitly 

specified are considered false. 

– Only positive literals are used for 
the description of initial states, goal 
states, and preconditions. 

– Effects of actions may include 
negative literals to negate particular 
conditions

• Action Description Language 
(ADL), adds a number of 
additional features
– Assumes open-world semantics: 

any unspecified conditions are 
considered unknown, not false
• Both positive/negative literals allowed

– Allows quantified variables, 
conjunction and disjunction, 
conditional effects, equality and 
non-equality predicates, typed 
variables

32
PDDL is an attempt to standardize planning languages and used at the IPC

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language


On HTNs in Story Planning

• May ease some challenges:
– More naturally support interleaving author and character goals

– Allow replanning just the chunks of the story the player messes up

– Can delay fully planning out tasks/subtasks

– Are often much faster (highly constrains the search)

• HTN Story Planning Examples by Fred Charles, Marc Cavazza
and Steven Mead
– https://www.youtube.com/watch?v=0erFey9hQTY

– https://www.youtube.com/watch?v=3wzSb8fzDA4

https://www.youtube.com/watch?v=0erFey9hQTY
https://www.youtube.com/watch?v=3wzSb8fzDA4


Behavior Trees + HTN Planning: ABL

• ABL: A behavior Language
– Reactive planning for real-time, 

complex agents

• Features
– Sequential & Parallel behaviors
– Demons & continuously monitored 

conditions
– Multiple simultaneous goal pursuit 

with reactivity
– Joint goals and behaviors (joint 

intentions)
– Reflection (meta-behaviors)
– Sensory-motor abstraction

34Credit: Ram, Mateas, Isbell. “An Introduction to ABL-Wargus”. GILA Kickoff 



ABL On Executing a Plan

• All steps (subgoals, primitive acts, mental 
acts, wait) succeed or fail
– Pass/fail propagates up the ABT
– Waits are used with conditions to accomplish 

demons

• Continuously monitored conditions: make 
behavior immediately reactive to world 
changes
– Success test: spontaneously pass if test is 

satisfied
– Context conditions: spontaneously fail a 

behavior if test is satisfied

• Execution:
– ABL: action begins executing as soon as it is 

selected by the decision cycle
– BT: action selection and execution decoupled

• ABL runs asynchronously from the main 
game update, while BTs are updated 
during an AI tic

• In ABL, the behavior tree is expanded as 
needed
– Instantiated as a single root behavior, which 

can subgoal additional behaviors
– When a behavior is selected for expansion, 

its steps (child nodes) are added to the active 
behavior tree (ABT)

– Leaf nodes in the ABT are nodes that are 
available for execution, unless currently 
executing

• Key benefit: Architecture coordinates 
author-specified joint action

35https://www.gamasutra.com/blogs/BenWeber/20120308/165151/ABL_versus_Behavior_Trees.php

https://www.gamasutra.com/blogs/BenWeber/20120308/165151/ABL_versus_Behavior_Trees.php


CONSTRAINT SATISFACTION

38



Constraint Satisfaction

• Also called constraint solving/constraint propagation

• Similar to search but instead of a heuristic with a single value, 
designers give constraints

– Constraints are facts that must be true in the final “answer” output

– Constraints can be authored or learned from an example

• Shout out to Dr. Adam Smith at UCSC



Constraint Satisfaction Problem (CSP)

Input

– Set of variables/slots

– Set of all values that can go in the slots

– Set of constraints that relate slots to each other

Output

– All variables are filled with a specific value

Trivial Example: Name generator

– Variables: <First Name> and <Last Name>

– Values: List of names

– Constraints: Names cannot start with the same letter



CSP (General) Process

• Initially, all variables have a list of all values 
they could potentially have

• Each update, pick one variable and choose 
arbitrarily from its remaining values (collapse)

• Based on the constraints, remove values from 
the surrounding variables to represent that 
they are no longer possible (propagation)

• End when all variables have only one value



CSP related to Search/Planning

• We have seen the idea of iteratively solving constraints before 
in partial order planning

– Use similar heuristics: most constrained variable, minimum remaining 
values

• CSP is essentially search, but is generally faster as we cut out 
vast parts of the search space due to constraint propagation



CSP: Dungeon Room Example

Constraints:

• There must be a path 
from the entrance to 
all treasure and all 
enemies

• There can only be at 
most 1 treasure

• There can only be at 
most 2 enemies

• Enemies cannot be 
next to each other

1-4 E 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1-4 1-4

Values:

1. Blank

2. Wall

3. Enemy

4. Treasure



CSP Step 1

1-4 E 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1-4

Collapse:
Constraints:

• There must be a path 
from the entrance to 
all treasure and all 
enemies

• There can only be at 
most 1 treasure

• There can only be at 
most 2 enemies

• Enemies cannot be 
next to each other

1-4 E 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1,2,
4

1-4

1-4 1,2,4 1,2,
4

Propagate:



CSP Step 2

1-4 E 1-4 1-4

1-4 1-4 1-4 1-4

1-4 1-4 1,2,
4

1-4

1-4 1,2,
4

Collapse:
Constraints:

• There must be a path 
from the entrance to 
all treasure and all 
enemies

• There can only be at 
most 1 treasure

• There can only be at 
most 2 enemies

• Enemies cannot be 
next to each other

1-3 E 1-3 1-3

1-3 1-3 1-3 1-3

1-3 1-3 1,2 1-3

1-3 1,2

Propagate:



CSP Step 3

1-3 E 1-3 1-3

1-3 1-3 1-3 1-3

1-3 1-3 1-3

1-3 1,2

Collapse:
Constraints:

• There must be a path 
from the entrance to 
all treasure and all 
enemies

• There can only be at 
most 1 treasure

• There can only be at 
most 2 enemies

• Enemies cannot be 
next to each other

1-3 E 1-3 1-3

1-3 1-3 1-3 1,3

1-3 1-3 1,3

1-3

Propagate:



CSP Output

E EE

E E E



CSP Usage

If output doesn’t look 
good, just add more 
constraints!

– Don’t have to consider 
balancing heuristic 

Need to strike balance 
of overly 
constrained/avoiding 
bad output

– In general, designers 
prefer this over 
heuristic tuning



Question 1

• Come up with a very simple generation task to which you could 
apply constraint satisfaction

– Give the variables for the problem

– Give the values for those variables

– Give the constraints



Writing constraints seems hard

Didn’t you say constraints could be learned?



Wave Function Collapse: 
The New Hotness

Proc Skater, Joseph Parker (2016) Caves of Qud, Freehold Games (2016)

WaveFunctionCollapse is Constraint Solving. 2017. Workshop on Procedural Content Generation 

https://github.com/mxgmn/WaveFunctionCollapse

https://github.com/mxgmn/WaveFunctionCollapse


Wave Function Collapse

• https://github.com/mxgmn/WaveFunctionCollapse
– https://twitter.com/OskSta/status/865200072685912064

• Developed by Maxim Gumin and released as open source 2016
– Caves of Qud was first commercial use, many others quickly followed

• Two primary execution modes: tile maps and textures
– Tilemap generation creates tile sets via propagation of adjacency 

constraints 

– Texture mode uses small (~16x16) training images to make arbitrarily 
large output textures locally similar to input

53
See also: http://bfnightly.bracketproductions.com/rustbook/chapter_33.html

https://github.com/mxgmn/WaveFunctionCollapse
https://twitter.com/OskSta/status/865200072685912064
http://bfnightly.bracketproductions.com/rustbook/chapter_33.html


Wave Function Collapse

• Procedural generation from a 
single example with 
WaveFunctionCollapse

– https://www.youtube.com/watch?v
=DOQTr2Xmlz0&feature=youtu.be

• Play with it!

– http://oskarstalberg.com/game/wa
ve/wave.html

https://www.youtube.com/watch?v=DOQTr2Xmlz0&feature=youtu.be
http://oskarstalberg.com/game/wave/wave.html


Wave Function Collapse Big Ideas

1. Derive legal patterns from a sample input 

2. Determine legal intersections of patterns to get constraints



Wave Function Collapse Algorithm

PatternsFromSample()

BuildPropagator()

While notFinished:

Observe()

Propagate()

OutputObservations()

Classic Constraint Satisfaction

Novel Stuff



Approach Sketch

1. Input divided into NxN tiles and their overlap with other tiles 
is calculated

2. Repeat while elements remain uncollapsed:

1. Output initialized with each pixel being a full superposition of 
possible output tiles.

2. The lowest entropy NxN area is selected from the output and one 
option is selected at random from the remaining possibilities

3. New information based on that selection are propagated to 
adjacent areas, removing possibilities that won’t properly overlap.

57

https://www.gdcvault.com/play/1026263/Math-for-Game-Developers-Tile

Video explanation by Brian Bucklew: https://www.youtube.com/watch?v=fnFj3dOKcIQ

https://www.gdcvault.com/play/1026263/Math-for-Game-Developers-Tile
https://www.youtube.com/watch?v=fnFj3dOKcIQ


Patterns from Sample 
(given neighbor size N=2)

The larger the neighbor size, the more like the input sample



Build Propagator



Output



CSP Pros/Cons

Pros

• Constraints are more intuitive than heuristics

• Faster in many cases than search
– Though slower than grammars due to propagation

• Can learn constraints from exemplar

Cons

• Must be able to represent problem in terms of 
formal logic


